
Winwap Technologies Oy

Client WAP Stack Library

Application Programming Interface

WAP stack version 2.6
WAP specification version: 2.0
Document dated: 11-Aug-2008

WAP Stack API http://www.winwap.com

Notice of Confidentiality

This document contains proprietary and confidential information that belongs to Winwap Technolo-
gies Oy.
The recipient agrees to maintain this information in confidence and to not reproduce or otherwise
disclose this information to any person outside of the group directly responsible for the evaluation
of the content.

Revision history

Date Author Description

14-Oct-2004 S Markelov Initial version of the newly designed WAP StackAPI specification.

9-Nov-2004 S Markelov New WAP HTTP Stack event: “progress”.

24-Nov-2004 Maria Sandell English spell checked.

26-Nov-2004 S Markelov
New events: func id cert, func id cert req.
New function: wps set prm ptr 3.3.2.

15-Dec-2004 S Markelov
Issuer certificate loading, server certificate verification (wps set prm ptr
function 3.3.2 and func id cert event).

27-Jan-2005 S Markelov
Timeout tuning for synchronous API functions wps get 3.7.1 and
wps post 3.7.2 in the WAP HTTP Client Stack.

12-May-2005 M Shkirja
wps get prm 3.3.1, wps set prm 3.3.1, wps get prm ptr 3.3.2,
wps set prm ptr 3.3.2: WSP Capability and WTP timer intervals management.

2-Sep-2005 S Markelov Size of sent data in progress id send 3.4.3 event.

20-Sep-2005 S Markelov Allow partial HTTP data sending: wps set prm 3.3.1.

8-Dec-2005 S Markelov Appendix with the list of certificate validation codes.

30-Nov-2005 S Markelov
Additional information about certificate chain in t cert data structure for
func id cert event.

23-Aug-2007 S Markelov Additional proxy settings http bypass proxy in wps set prm ptr 3.3.2.

17-Jan-2008 S Markelov Server headers in progress id recv 3.4.3 event.

18-Jan-2008 S Markelov Obsolete API is not more supported.

11-Aug-2008 S Markelov wps get prm req 3.3.3: returns outgoing port number.

Preamble

The reader of this document should be familiar with all or some of the following in order to fully
understand and evaluate the information in this document:

• Basic knowledge in programming techniques.

• Basic understanding of networking connections and client/server architecture where user-
agents retrieve and render information (e.g. Internet browsers and servers with services).

• The interaction between a WAP user-agent, a WAP Gateway and a WEB Server.

c© Winwap Technologies Oy 1

http://www.winwap.com

WAP Stack API http://www.winwap.com

Contents

1 Definitions 3

2 Normative references 4

3 API specification 5
3.1 Declarations . 5
3.2 Library initialization and release . 6

3.2.1 wps init, wps fini . 6
3.2.2 Logging . 7

3.3 Tuning . 9
3.3.1 wps get prm, wps set prm . 9
3.3.2 wps get prm ptr, wps set prm ptr . 13
3.3.3 wps get prm req . 17
3.3.4 wps set wtlsclient id . 18

3.4 Register event handlers . 19
3.4.1 wps reg callback func . 19
3.4.2 Callback functions . 21
3.4.3 Event data . 23

3.5 WAP Stack . 32
3.5.1 Creation . 32
3.5.2 Destroying . 33
3.5.3 Binding to system network interface . 34

3.6 Session establishment and termination . 36
3.6.1 wps connect . 36
3.6.2 wps disconnect . 38

3.7 Data requesting . 39
3.7.1 wps get . 39
3.7.2 wps post . 41
3.7.3 wps abort . 43

3.8 Sending requested data . 44
3.8.1 wps reply . 44

A Appendix 46
A.1 List of server certificate validation codes . 46

c© Winwap Technologies Oy 2

http://www.winwap.com

WAP Stack API http://www.winwap.com

1 Definitions

In this document the following definitions have been used:

WAP Stack An Object that is created by the function wps open 3.5.1.

WAP Stack client An Application that creates the WAP Stack and uses its service(s) through the
Application Programming Interface (API).

c© Winwap Technologies Oy 3

http://www.winwap.com

WAP Stack API http://www.winwap.com

2 Normative references

[RFC-2616] “Hypertext Transfer Protocol – HTTP/1.1”
ftp://ftp.isi.edu/in-notes/rfc2616.txt

[WP-HTTP] “Wireless Profiled HTTP”, Open Mobile Alliance
http://www.openmobilealliance.org/

[WSP] “Wireless Session Protocol”, Open Mobile Alliance
http://www.openmobilealliance.org/

[WTLS] “Wireless Transport Layer Security Protocol”, Open Mobile Alliance
http://www.openmobilealliance.org/

[WTP] “Wireless Transaction Protocol Specification”, Open Mobile Alliance
http://www.openmobilealliance.org/

c© Winwap Technologies Oy 4

http://www.winwap.com
ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/

WAP Stack API http://www.winwap.com

3 API specification

3.1 Declarations

All functional and type declarations are available in the following C-headers files:

wps e2.h — General API functions and type definitions.
wps utils.h — API functions not belonging to data transfer operations.
wps errno.h — Named error constants.
wps types.h — Type definitions. These types are used as types for functional parameters and as

WAP Stack internal types.

c© Winwap Technologies Oy 5

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.2 Library initialization and release

3.2.1 wps init, wps fini

NAME

wps init — initialize the WAP Stack Library
wps fini — release the WAP Stack Library

SYNOPSIS

#include "wps e2.h"

int wps_init(void);
int wps_fini(void);

DESCRIPTION

The wps init function is used for WAP Stack Library initialization. This function is mandatory
to call after loading of the WAP Stack Library and prior to using any other API functions.

The wps fini function is an opposite of the wps init function. It is used for releasing the
WAP Stack Library and it destroys all allocated WAP Stack Library internal objects. This
function shall be called before unloading the WAP Stack Library and after using any other
API functions.

RETURN VALUE

On success, zero is returned. On failure, the returned value is an error code.

ERRORS

The wps init function can return the following error codes:

wps error no memory — Not enough memory for internal object allocations.

wps error network — Applicable for Win32 platforms only. Can not initialize Windows Sock-
ets library.

The wps fini function can return the following error code:

wps error network — Applicable for Win32 platforms only. Can not initialize Windows Sock-
ets library.

NOTES

The function wps fini should not be called in any callback function as it may cause a deadlock
situation or hang the application. Neither should the wps fini be called while any WAP Stack
instance exists.

c© Winwap Technologies Oy 6

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.2.2 Logging

NAME

wps init log — set logger parameters.

SYNOPSIS

#include "wps_e2.h"

typedef struct t_log_prm
{

const char *path;
t_log_level level;
size_t split;

} t_log_prm;

int wps_init_log(t_log_prm *prm);

DESCRIPTION

The wps init log function is used for setting logger parameters. It can also be used for switching
the logger on or off. The logger is a global internal object, which is the only one available
for all WAP Stack instances. After WAP Stack Library initialization the logger is by default
switched off.

The prm parameter is a pointer to the t log prm structure and sets the logger parameters.
The members of the structure are:
path path to the logging file;
level level of logging: how much information to be logged;
split approximate maximum size of the logging file.

The value of the level structure member can be one of the following values:

LOG DISABLED switch logging off;
LOG FATAL log only critical messages;
LOG WARNING log important messages;
LOG INFORMATION log yet more messages;
LOG ALL log all messages.

The value split & 0x7FFFFFFF — sets the maximum size of the log file; the highest bit of
the split value requires the current log file to be moved and start a new log file immediately.
The logging data will be appended to the current log file in case the highest bit is 0. When
the size of the log file named “logfile” becomes greater than split & 0x7FFFFFFF value,
the logged file “logfile” is renamed to file “logfile.1”, i. e. “.1” is appended to the filename.
If the file “logfile.1” already exists it will be removed. Logging will then continue with the
new file “logfile”. The split value does not guarantee that the new log file will be used
immediately when the size of the active log file reaches the split & 0x7FFFFFFF value. The
logger checks the file size only during client activities (inside of wps get 3.7.1, wps post 3.7.2,
wps connect 3.6.1 or wps disconnect 3.6.2 functions) or when the stack receives data.

c© Winwap Technologies Oy 7

http://www.winwap.com

WAP Stack API http://www.winwap.com

The wps init log function can be called at any time. Received and sent packages are logged
with the level LOG INFORMATION. Please be careful with this level as all data sent and
received on any of the stack layers WSP, WTP and WTLS will be logged. This includes both
data before encryption (i. e. plain data) and the same data after encryption (i. e. encrypted
data).

RETURN VALUE

On success, zero is returned. On failure the returned value 1 indicates that the parameter has
an incorrect value. Any other value is an error code.

ERRORS

wps error system — System error occurred.

c© Winwap Technologies Oy 8

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.3 Tuning

3.3.1 wps get prm, wps set prm

NAME

wps get prm — retrieve a numerical parameter value.
wps set prm — set a new numerical parameter value.

SYNOPSIS

#include "wps_e2.h"

int wps_get_prm(t_hwps hwps, enum t_wps_layer layer, int prm_id,
int *val);

int wps_set_prm(t_hwps hwps, enum t_wps_layer layer, int prm_id,
int val);

DESCRIPTION

The wps get prm and wps set prm function calls manipulate the values of numerical parame-
ters associated with different protocol levels of the WAP Stack.

The parameter hwps sets the WAP Stack handle, which is returned by the wps open 3.5.1
function call.

The parameter layer sets the WAP WSP protocol level. The present implementation of the
WAP Stack includes five protocol levels, each associated with numerical constants as described
below:

layer wdp WDP — Wireless Datagram Protocol;
layer wtls WTLS — Wireless Transport Layer Security;
layer wtp WTP — Wireless Transaction Protocol;
layer wsp WSP — Wireless Session Protocol;
layer http HTTP — Wireless Profiled HTTP;
layer ssl SSL — Secure Socket Layer Protocol.

The parameter prm id identifies the parameter of the given protocol level. The following
constants, depending on the protocol level, can be used as values for the prm id parameter:

WDP:
buf wmax Maximum size of the WDP buffer for sending.
buf rmax Maximum size of the WDP buffer for reading.
wdp port tx Outgoing port number.

WTP:
sar enable Switcher ”enable/disable SAR”.
sar first grp fcnt Count of frames of first SAR group.
sar grp fcnt Count of frames of other SAR groups.
sar fsize Size of SAR frame.
tit base retry Base retry timer interval in seconds.
tit base acknow Base acknowledgment timer interval in seconds.
tit wait timeout Wait timeout interval in seconds.

c© Winwap Technologies Oy 9

http://www.winwap.com

WAP Stack API http://www.winwap.com

WSP:
cap client sdu size Client SDU Size.
cap server sdu size Server SDU Size.
cap proto options Protocol Options.
cap method mor Maximum Outstanding Method Requests.
cap push mor Maximum Outstanding Push Requests.
cap client msgsize Client Message Size.
cap server msgsize Server Message Size.
wsp he ver Header encoding version:

0x12 — version 1.2
0x13 — version 1.3
0x14 — version 1.4

HTTP/HTTPS:

http send timeout HTTP request sending timeout.
http wait timeout HTTP server reply timeout.
http split size The Maximum size of a partial message that should be sent in one call of

TCP socket send operation.

In case the function call set wps prm is used, the parameter value sets the value of the given
parameter. In case the function call get wps prm is used the parameter points to the location
where the current value of the requested parameter shall be placed.

RETURN VALUE

On success, zero is returned. On failure the returned value ranging from 1 to 4 indicates the
parameter number with incorrect value. Other values are error codes.

ERRORS

wps error not allowed — Attempt to set a parameter value although not allowed.

NOTES

The sizes of the WDP buffers can be tuned at any moment, but the parameters will be first
used in wps bind call. By default the size of the WDP buffers are set to the maximum values
supported by the operating system (OS). 1024 bytes of the WDP buffers are reserved for
the WTLS layer. WDP buffers for reading and writing can therefore not be greater than
the buffers provided by the OS minus 1024 bytes. The wps set prm function call returns no
errors in case of very large buffers. After the wps set prm function is called, the wps get prm
function can be used to determine the actual set sizes of the WDP buffers.

The switcher ”enable/disable SAR” value can be set either to 0 or 1. The 0 value disables
SAR and the 1 value enables SAR. Please note that when several WSP sessions within one
WAP Stack instance are active, the switcher is applied to the whole WTP layer (and thus
to the whole WAP Stack instance and all WSP sessions). In order to avoid problems with
enabling and disabling SAR it is recommended to open sessions with WTP SAR enabled and
disabled in different instances of the WAP Stack. In case of one only session, you may simply
enable/disable SAR without any problems.

c© Winwap Technologies Oy 10

http://www.winwap.com

WAP Stack API http://www.winwap.com

The number of frames of SAR groups can range from 1 to 255. Since the first group is sent
without knowing the status of the receiver, the number of frames should not be too large.
The default values are two frames for the first group and five frames for the other groups.

The SAR frame size can be changed at any time. When SAR is enabled, requests are split
in frames of this size. When SAR is disabled, all requests are sent in one frame with the
maximum size of the WDP buffer for sending. The SAR frame size can not be smaller than
16 bytes or greater than the size of the WDP buffer for sending. In case the value parameter
is not passed, the default value is used. The default SAR frame size is 1400 bytes.

There are three kinds of timers used by the WTP layer: acknowledgment, retry and wait
timeouts. Different values of timers are used depending on whether user acknowledgments are
used. To modify or retrieve timer values used with user acknowledgment set the highest bit of
the val parameter. For more details about timer intervals see the WTP protocol specification.

There are number of capabilities defined in the [WSP] (p. 4). It is possible to access and
modify them. But in order to set Client SDU Size and Server SDU Size modify buf wmax and
buf rmax from the WDP layer. For more information about capabilities see [WSP] (p. 4).

Use the wdp port tx parameter to observe outgoing port number in the WDP layer or use the
wps get prm req 3.3.3 function to retrieve and observe outgoing TCP port number used in
HTTP requests.

Header encoding version shall be encoded as defined for the Encoding-Version field in the
[WSP] (p. 4). Currently the WAP Stack accepts the following hexadecimal values:

0x12 — Version 1.2;
0x13 — Version 1.3;
0x14 — Version 1.4.

The default header encoding version is 1.3.

The wps get prm and wps set prm functions allow to determine or set timeout values for
HTTP request sending and HTTP response waiting operations. The timeout values are in
milliseconds. These values can be changed by the WAP Stack client at any moment, but the
new values do not take effect on currently active requests.

If a HTTP request can not be sent during the time (in milliseconds) set to http send timeout
option, then wps get 3.7.1 and wps post 3.7.2 functions return wps error timedout error code.
If either 0 or big enough number of milliseconds is assigned to the http send timeout option
then the wps get 3.7.1 and wps post 3.7.2 functions will try to send a HTTP request until
TCP timeout occurs.

The default sending timeout is 0 milliseconds, i. e. operations will wait for TCP timeout.

If a HTTP response can’t be received during the time (in milliseconds) assigned to
http wait timeout option, then the func id reply 3.4.1 event occurs with 0x48 (HTTP 408
Request Timeout) status code.

The default waiting timeout for HTTP server response is 60 000 milliseconds (60 seconds).

The wps get prm and wps set prm functions allow to determine or set the maximum size of
a partial message. If the value is set and greater than 0 the message to be sent will be split
in several parts of the given size and each partial message will be send in the one TCP send
operation. So the whole HTTP request will be sent as a set of several messages and the
event func id progress 3.4.3 with the indicated progress id send action will allow to determine
in run-time the count of bytes that are already sent as a request to a HTTP Server.

c© Winwap Technologies Oy 11

http://www.winwap.com

WAP Stack API http://www.winwap.com

The value 0 switches the HTTP client to its default behaviour that is depended on the used
platform:

Win32: the whole request will be always sent in one atomic TCP send operation for both
HTTP and HTTPS modes.

Linux: same as in the Win32, but if http send timeout is set for HTTP mode then the
whole messages will be sent as a set of partial messages with the size determined
by the system.

Please note: if the value http split size is greater than 0 it will be ignored in HTTPS mode. A
partial sending is performed with the size of a message block, which is 16kB for SSLv3/TLSv1.

This parameter may reduce the efficiency of the network operations.

c© Winwap Technologies Oy 12

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.3.2 wps get prm ptr, wps set prm ptr

NAME

wps get prm ptr — retrieve not numerical parameter value.

wps set prm ptr — set not numerical parameter value.

SYNOPSIS

#include "wps_e2.h"

int wps_get_prm_ptr(t_hwps hwps, enum t_wps_layer layer, int prm_id,
void *ptr, size_t *size);

int wps_set_prm_ptr(t_hwps hwps, enum t_wps_layer layer, int prm_id,
const void *ptr, size_t size);

DESCRIPTION

The wps get prm ptr and wps set prm ptr function calls manipulate the values of not numer-
ical parameters associated with different protocol levels of the WAP Stack.

The hwps parameter sets the WAP Stack handle, which is returned by wps open 3.5.1.

The parameter layer sets the protocol level. The present implementation of the WAP Stack
includes five protocol levels, each associated with the following numerical constants:

layer wdp WDP — Wireless Datagram Protocol;
layer wtls WTLS — Wireless Transport Layer Security;
layer wtp WTP — Wireless Transaction Protocol;
layer wsp WSP — Wireless Session Protocol;
layer http HTTP — Wireless Profiled HTTP.
layer ssl SSL — Secure Socket Layer Protocol.

The prm id parameter identifies the parameter of the given protocol level. The following
constants, depending on the protocol level, can be used as values for the prm id parameter:

WSP:
cap ext method Extended Methods.
cap hcodepage Header Code Pages.
cap alias Aliases.

WTLS:
ke avail list list of available key exchange suits (read-only);
be avail list list of available bulk encryption algorithms (read-only);
mac avail list list of available keyed MAC algorithms (read-only).

HTTP/HTTPS:

http bypass proxy hosts or networks by which HTTP proxy is bypassed (write-only).

SSL (HTTPS):

ssl cert client’s certificate and private key (write-only);
ssl ca cert trusted issuer certificate that will be used for verification (write-only).

c© Winwap Technologies Oy 13

http://www.winwap.com

WAP Stack API http://www.winwap.com

In case of the wps get prm ptr function the ptr parameter points to the allocated memory
buffer where the requested data shall be placed. The returned data is a byte array of values
and the size of the array is returned through the size pointer.

The size parameter points to the location with the size of the allocated memory buffer
placed. The size argument must not be NULL. The size of the placed data is stored in the
location pointed by the size argument.

In case of the wps set prm ptr function the ptr parameter points to the allocated memory
buffer where the data to be assigned is placed.

The size parameter contains the size of the data to be assigned. The size is counted in
bytes. Please see section “NOTE” for data format description.

RETURN VALUE

On success, zero is returned. On failure the returned value ranging from 1 to 4 indicates the
parameter number with incorrect value. Other values are error codes.

ERRORS

The wps get prm ptr function can return only one error code:

wps error no space — Not enough space for the returned array. size parameter contains
needed size.

The wps set prm ptr function can return only one error code:

wps error no memory — Not enough memory for new value.

NOTES

The wps set prm ptr function guarantees that the old value will not be changed in case of
error.

To assign hosts or networks, requests to which shall be direct (bypass HTTP proxy), the
WAP Stack client should call the wps set prm ptr function for layer http with parameter
http bypass proxy. If the value size is 0, the value ptr shall be zero-terminated ANSI string.
Host and network filters can be set as DNS names or IP addresses as in the samples below:

Filter Direct request Request via proxy

winwap.com http://winwap.com http://www.winwap.com

.winwap.com http://www.winwap.com http://winwap.com

168.0.0.1 168.0.0.1 168.0.0.2

168.0.0.0/255.255.255.0 168.0.0.2 168.0.1.1

168.0.0.0/24 168.0.0.2 168.0.1.1

0xA8.0.0.0/24 168.0.0.2 168.0.1.1

0250.0.0.0/24 168.0.0.2 168.0.1.1

c© Winwap Technologies Oy 14

http://www.winwap.com

WAP Stack API http://www.winwap.com

The wps set prm ptr with parameter http bypass proxy shall be called several times for each
network or host filter separately.

To assign new private key and client certificate the WAP Stack client should call the
wps set prm ptr function for layer ssl with parameter ssl cert. The passed data is the filled
structure defined as follows:

struct t_cert_cli_data
{

enum t_cert_type cert_type;
const void *cert;
size_t cert_size;
enum t_pkey_type pkey_type;
const void *pkey;
size_t pkey_size;

};

The members of the structure are:
cert type certificate type:

cert type x509 — X509 certificate;
cert pointer to the first byte of the DER-encoded11 certificate;
cert size size of the DER-encoded certificate;
pkey type private key type:

pkey type rsa — RSA private key,
pkey type dsa — DSA private key;

pkey pointer to the first byte of the DER-encoded private key;
pkey size size of the DER-encoded private key.

The size parameter must be set to sizeof(t cert cli data).

The WAP Stack client should not contain a private key in its executable file. A
violator can extract the private key from the executable file.

A UNIX user shall remove a dumped core file if an application that uses the WAP
Stack Library has crashed. A violator can extract the private key from the core file.

To add a new issuer certificate the WAP Stack client should call wps set prm ptr function for
layer ssl and parameter ssl ca cert. The passed data is a structure defined as follows:

struct t_cert_ca_data
{

enum t_cert_type cert_type;
const void *cert;
size_t cert_size;

};

The members of the structure are:
cert type certificate type:

cert type x509 — X509 certificate;
cert pointer to the first byte of the DER-encoded certificate;
cert size size of the DER-encoded certificate.

1The DER format is “Distinguished Encoding Rules” and is the most commonly used binary form for ASN.1-
specified objects.

c© Winwap Technologies Oy 15

http://www.winwap.com

WAP Stack API http://www.winwap.com

The size parameter must be set to sizeof(t cert ca data).

The WAP Stack can only add an issuer certificate to the list of trusted certificates. To clear
the list of trusted certificates and assign new issuer certificates the WAP Stack client shall
close a WAP Stack instance using wps close 3.5.2 and open a new WAP Stack instance using
wps open 3.5.1.

To set or get “Extended Methods”, “Header Code Pages” or “Aliases” capabilities call
wps set prm ptr or wps get prm ptr function for layer wsp and corresponding capability in
third parameter. The ptr parameter shall point to next structures or array of those struc-
tures.

struct uint8_and_str
{

unsigned char *num;
const char *str;

};

typedef struct uint8_and_str t_ext_method;
typedef struct uint8_and_str t_hcodepage;

struct t_address
{

unsigned char bearer;
unsigned short port;
const char *address;
size_t addrlen;

};

typedef struct t_address t_alias;

The members of the structures are:
num either PDU Type for method or code for header page;
str either name of method or name of header code page;
bearer type of bearer network to use. 0xFF indicates no bearer;
port port number to use. 0 indicate no port number;
address bearer address to use;
addrlen length of the address field.

c© Winwap Technologies Oy 16

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.3.3 wps get prm req

NAME

wps get prm req — retrieve request specific parameters.

SYNOPSIS

#include "wps_e2.h"

int wps_get_prm_req(t_hreq hreq, enum t_req_prm prm_id, int *val);

DESCRIPTION

The wps get prm req function call retrieves the values of numerical parameters associated
with requests.

The parameter hreq sets the request handle, which is returned by the wps get 3.7.1 or the
wps post 3.7.2 function call.

The parameter prm id identifies the parameter of the request. The following constant, can
be used as value for the prm id parameter:

req port tx Outgoing port number.

RETURN VALUE

On success, zero is returned. On failure the returned value ranging from 1 to 3 indicates the
parameter number with incorrect value.

c© Winwap Technologies Oy 17

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.3.4 wps set wtlsclient id

NAME

wps set wtlsclient id — assign WTLS client identifier.

SYNOPSIS

#include "wps_e2.h"

int wps_set_wtlsclient_id(unsigned char type,
const unsigned char *id, unsigned char size,
unsigned short charset);

DESCRIPTION

The wps set wtlsclient id function is used for filling the WTLS structure Identifier, which is
global for all WAP Stack instances.

The parameter type is an identifier which can be assigned to the following values:

0 — null
1 — text
2 — binary

The parameter id is a pointer to an identifier of the given type. In case the type is null, it is
ignored. If the parameter id is NULL and type is not null, the default identifier will be set.
The default identifier is a value of binary type: 0x00000000A5B5C5D5E50000.

The parameter size is an identifier size in bytes, which is ignored for null type.

The parameter charset sets the character set of the text identifier. In case type differs
from text, it is ignored. charset is a unique MIBenum value that can be used to identify
coded character sets.

RETURN VALUE

On success, zero is returned. On failure the returned value ranging from 1 to 3 indicates the
parameter number with incorrect value.

NOTES

The function wps set wtlsclient id is not thread safe.

c© Winwap Technologies Oy 18

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.4 Register event handlers

Starting from version 2.4 of the WAP Stack, a new API for manipulating event handlers is provided.
Now all callback functions have the same syntax and they can be assigned to the WAP Stack at
any time.

Due to the evolution of the WAP Stack 3 old callback functions are still available. However it is
recommended to use the new callback API.

3.4.1 wps reg callback func

NAME

wps reg callback func — register callback function that will process events.

SYNOPSIS

#include "wps_e2.h"

int wps_reg_callback_func(t_hwps hwps, t_func_id func_id,
f_callback *func, f_callback **func_old);

DESCRIPTION

The wps reg callback func function registers a given function as event handler.

The WAP Stack is identified by the parameter hwps.

The func id parameter identifies an event, which will be processed by the given callback
function. The present implementation of the WAP Stack can generate five events, each
associated with numerical constants as described below:

func id connect WAP WSP Stack connection;
func id reply WAP WSP/HTTP Stack received requested data;
func id push WAP WSP Stack received pushed data;
func id wtp frame WAP WSP Stack low-level transfer operations;
func id request WAP HTTP Server: received request;
func id progress WAP HTTP Stack: activity indication;
func id cert WAP HTTP/SSL Stack: server certificate
func id cert req WAP HTTP/SSL Stack: client certificate request.

The address of the function that process a given event is passed through the parameter
func. One function may process several events. The events can be identified by the func id

parameter value of the callback function.

In case the parameter func old is not NULL it returns the address of the previous function
that was registered as event handler.

RETURN VALUE

c© Winwap Technologies Oy 19

http://www.winwap.com

WAP Stack API http://www.winwap.com

On success, zero is returned. On failure the returned value ranging from 1 to 2 indicates the
parameter number with incorrect value. Other values are error codes.

ERRORS

wps error not object — The given hwps value is not a WAP Stack handle.

SEE ALSO

Section Callback functions 3.4.2.

NOTES

The developer of the WAP Stack client should take it into account that callback functions
may be called from different threads by the WAP Stack at any time.

When the WAP Stack is in the connectionless mode, the callback function registered as
func id connect is not called. In this case the API wps connect function 3.6.1 is synchronous
and it can not call any callback functions since its returned value will be unknown to the WAP
Stack client.

If a callback function is registered as a func id wtp frame function, it shall not call any WAP
Stack API function(s) when processing an event with the identifier func id wtp frame. Please
note that in case an attempt to call any WAP Stack API function(s) is made, the program
may hang or crash.

The code in the above mentioned function should also execute as fast as possible. In other
words, the WAP Stack client must not show e.g. a modal window in the func id wtp frame
handler.

It is strongly suggested that GUI implementations should not be made in callback functions.
The developer should also avoid using algorithms that may block event handlers or put them
in waiting mode.

c© Winwap Technologies Oy 20

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.4.2 Callback functions

NAME

f callback — type declaration of the callback function.

SYNOPSIS

#include "wps_e2.h"

typedef void f_callback(t_func_id func_id, void *hobj, void *context,
union t_callback_data *data);

DESCRIPTION

The type definition f callback defines the syntax declaration of the callback function.

When the callback function is called, the func id parameter contains a callback function
identifier (or event identifier) that can be helpful for identification of the event. This is useful
in cases when one function is registered as a handler of several events.

The hobj parameter is the request or session handle.

The context parameter contains the value given by the WAP Stack client through
wps open 3.5.1. This is generally a pointer to the WAP Stack client.

The pointer data points to a union that contains data specific for an event. The event can
be identified by the value of the func id parameter in case one function is registered as a
handler of several events.

NOTES

The developer of the WAP Stack client should take it into account that callback functions
may be called from different threads by the WAP Stack at any time.

If a callback function is registered as a func id wtp frame function, it shall not call any WAP
Stack API function(s) when processing an event with the identifier func id wtp frame. Please
note that in case an attempt to call any WAP Stack API function(s) is made, the program
may hang or crash.

The code in the above mentioned function should also execute as fast as possible. In other
words, the WAP Stack client must not show e.g. a modal window in the func id wtp frame
handler.

It is strongly suggested that GUI implementations should not be made in callback functions.
The developer should also avoid using algorithms that may block event handlers or put them
in waiting mode.

SEE ALSO

Section Event data 3.4.3.

c© Winwap Technologies Oy 21

http://www.winwap.com

WAP Stack API http://www.winwap.com

EXAMPLE

Below is a C++ code sample of an event handler. This event handler reports about all sent
and received WTP packets with invocation and result.

void on_frame(t_func_id func_id, void *hobj, void *context,
const union t_callback_data *data)

{
unsigned long frame_attr = data->wtp_frame_data.attr;
if (frame_attr & frame_sent)
{

switch (frame_attr & frame_type)
{
case wtp_pdu_type_invoke: // WTP PDU type Invoke

std::cout << "--> Invoke ";
std::cout << ((frame_attr & frame_dir)

? "received\n" : "sent\n");
break;

case wtp_pdu_type_result: // WTP PDU type Result
std::cout << "<-- Result ";
std::cout << ((frame_attr & frame_dir)

? "received\n" : "sent\n");
break;

}
}

}

This handler can be registered in the following way:

wps_reg_callback_func(hwps, func_id_wtp_frame, on_frame, NULL);

c© Winwap Technologies Oy 22

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.4.3 Event data

Although the event handler can be registered to process events of different types, the data passed
through the data pointer is different for each event type. Below is a description of the data passed
through the data pointer for each event type.

Connection status data

NAME

t connect data — reported data about connection status.

SYNOPSIS

#include "wps_e2.h"

struct t_connect_data
{

t_connect_code code;
const char *data1;
int data2;

};

DESCRIPTION

The data parameter of the callback function func id connect points to the t connect data.

The members of the structure are:
code returned connection status code;
data1 optional connection data, depends on code;
data2 optional connection integer data, depends on code.

Replied and pushed data

NAME

t reply data, t push data — data pushed and replied to by a WAP Gateway.

SYNOPSIS

#include "wps_e2.h"

struct t_reply_data
{

const void *data;
size_t data_size;

c© Winwap Technologies Oy 23

http://www.winwap.com

WAP Stack API http://www.winwap.com

const char *ct;
const char *hdr;
int status;

};

struct t_push_data
{

const void *data;
size_t data_size;
const char *ct;
const char *hdr;
int status;

};

DESCRIPTION

The data parameter of the callback function func id reply points to the t reply data structure.

The data parameter of the callback function func id push points to the t push data structure.

The members of the structures are:
data received data;
data size data size;
ct content type of the received data;
hdr server HTTP messages;
status status code.

The status code is encoded as defined in the [WSP] (p. 4), Appendix A.

Request data

NAME

t http req data — full information about a received HTTP request.

SYNOPSIS

#include "wps_e2.h"

struct t_http_req_data
{

const char *ip;
unsigned short port;
t_method method;
const char *url;
const char *hdrs;
const void *data;
size_t data_size;
const char *ct;

c© Winwap Technologies Oy 24

http://www.winwap.com

WAP Stack API http://www.winwap.com

int accept;
};

DESCRIPTION

The data parameter of the callback function func id request points to the t http req data
structure.

The event func id request is called in the WAP HTTP Server Stack when an incoming HTTP
request is fully or partially received.

The value accept allows the WAP Stack client application to determine if the request has
been fully received and processed by the WAP HTTP Server Stack. Please note the difference
between a “WAP Stack client application” and a “WP-HTTP client”. The WP-HTTP client
is generally a remote application, which sends requests to the WAP HTTP Server. These
requests are processed by the WAP Stack client application.

The members of the structure are:
ip IP address of the WP-HTTP client sending a request;
port network port number of the WP-HTTP client sending a request;
method request type:

method get method GET: the WP-HTTP client wishes to retrieve data,
identified by the URL;

method head method HEAD: same as the method GET, but the client
doesn’t wish to retrieve real data;

method post method POST: similar to the method GET, but additional
data is available in the data;

method options method OPTIONS: please see RFC-2616 2 for further
explanation.

url requested resource location;
hdrs HTTP headers, in other words additional messages;
data additional data supplied with the request;
size size of supplied data;
ct 0-terminated string with data content type;
accept this filed can be assigned with the following values:

0 — the request is fully received and processed by the WAP HTTP Server Stack
1 — the request is not yet fully received and only partially processed
The field value can be changed by the WAP Stack client. Please see below.

NOTES

For each received request a new WP-HTTP session in an own thread is opened and
the func id request event is called. The requested data is passed from the structure
t http req data. The member accept of the structure can be set to two values:

• 1 — not all data is received.

The WAP Stack client shall wait for the next func id request event or it can assign 0 to
the accept member for termination of the current TCP connection.

c© Winwap Technologies Oy 25

http://www.winwap.com

WAP Stack API http://www.winwap.com

• 0 — all data is received.

The WAP Stack client can process the received data and send a reply using the wps reply
function.

After the event is processed, the TCP connection will be terminated if the accept field is set
to 0.

The wps reply 3.8.1 function is used to reply on the received request. The wps reply 3.8.1
function shall be called in the func id request event handler or the event handler can be
stopped for the time required for the call of the wps reply 3.8.1 function. For example the
Win32 SendMessage function can be used to stop the caller thread execution and execute some
functions in another thread. There is no API for termination of TCP connection provided.
The TCP connection can be broken only in the func id request event handler by assigning 0
to the accept member.

EXAMPLE

Below is a C sample code of the event handler reporting into stdout about received HTTP
requests.

void on_request(t_hreq req, t_http_req_data &data)
{

const char *templ =
"Request from address: %s:%u\n"
"Request method: %s\n"
"Requested URL: %s\n"
"Request headers: \n%s\n"
"Attached data is of type: %s\n"
"Attached data is of size: %u\n";

if (0 == data.accept) // all data ?
{

const char *method;
switch (data.method)
{
case method_get:

method = "GET";
break;

case method_post:
method = "POST";
break;

case method_head:
method = "HEAD";
break;

case method_options:
method = "OPTIONS";
break;

}
printf(templ, data.ip, data.port,

method, data.url ? data.url : "", data.hdrs,

c© Winwap Technologies Oy 26

http://www.winwap.com

WAP Stack API http://www.winwap.com

data.ct ? data.ct : "", data.data_size);

// When function will return, TCP connection will be broken.
}

}

HTTP client progress indicator

NAME

t progress data — HTTP client progress indicator.

SYNOPSIS

#include "wps_e2.h"

struct t_progress_data
{

enum t_progress_id id;
size_t data_size;
size_t hdrs_size;
const char *hdrs;

};

DESCRIPTION

The t progress data structure is pointed by the data parameter of the callback function
func id progress.

The members of the structure:
id identifies the last finished action of the WAP HTTP client:

progress id connect connection to the HTTP server is established,
progress id send request is partially or fully sent,
progress id recv response data is partially or fully received;

data size size of the received or sent data;
hdrs size size of the headers in the received data, 0 means not all HTTP-messages are yet

received;
hdrs server HTTP-messages in headers.

The value of the member data size is applicable for both progress id send and
progress id recv WAP HTTP client actions. The values of the members hdrs size and
hdrs are only applicable for the progress id recv WAP HTTP client action.

NOTES

The event func id progress with the indicated progress id recv action can be called several
times before the event func id reply is called.

progress id send action indicator can be called several times.

c© Winwap Technologies Oy 27

http://www.winwap.com

WAP Stack API http://www.winwap.com

The event func id progress with the indicated progress id send action allows to determine the
count of bytes that are already sent as a request to a HTTP Server. The data size value
indicates the size of the sent part of the entire HTTP request including HTTP headers and
HTTP body. Please see wps set prm 3.3.1 for additional information.

The event func id progress with the indicated progress id recv action allows to determine the
count of bytes that are already received as a HTTP Server response. This data is buffered in
the WAP HTTP Client Stack and after the required transformations it will be passed through
the func id reply event when the whole response has been received. The data size value
doesn’t indicate the content data and headers size, since the content may be compressed
and HTTP headers can be modified after decompression (decompressed content and modified
HTTP headers are passed through the func id reply event).

The value hdrs size contains the size of the HTTP headers. The HTTP headers is only part
of the entire HTTP response. Generally, the size of the compressed content in the HTTP
response can be calculated as data size − hdrs size − 4.

SEE ALSO

wps set prm 3.3.1

WTP frame data

NAME

t wtp frame data — WTP process event data.

SYNOPSIS

#include "wps_e2.h"

struct t_wtp_frame_data
{

unsigned char id;
size_t size;
unsigned long attr;

};

DESCRIPTION

The data parameter of the callback function func id wtp frame points to the
t wtp frame data structure.

The members of the structure are the following:

id frame id (from 0 till 255);
size frame size;
attr frame attributes.

c© Winwap Technologies Oy 28

http://www.winwap.com

WAP Stack API http://www.winwap.com

To determine frame attribute values, the following masks are defined:

frame resend 0 — first sending, 1 — re-sending;
frame last last frame in WTP message;
frame group last frame in group;
frame dir 0 — outgoing frame, 1 — incoming frame;
frame sent for outgoing frame:

0 — about start of frame sending,
1 — frame has been sent;

frame type WTP PDU type. The attribute can contain the following values that
define possible types of the WTP PDU:
wtp pdu type invoke Invoke WTP PDU;
wtp pdu type result Result WTP PDU;
wtp pdu type ack Ack WTP PDU;
wtp pdu type abort Abort WTP PDU;
wtp pdu type s invoke Segmented Invoke WTP PDU;
wtp pdu type s result Segmented Result WTP PDU;
wtp pdu type nack Negative Ack WTP PDU.

All above masks can be used with the bitwise operator AND to determine an attribute value.

NOTES

The developer of the WAP Stack client should take it into account that callback functions
may be called by the WAP Stack from different threads at any time.

If a callback function is registered as a func id wtp frame function, it shall not call any WAP
Stack API function(s) when processing an event with the identifier func id wtp frame. Please
note that in case an attempt to call any WAP Stack API function(s) is made, the program
may hang or crash.

The code in the above mentioned function should also execute as fast as possible. In other
words, the WAP Stack client must not show e.g. a modal window in the func id wtp frame
handler.

It is strongly suggested that GUI implementations should not be made in callback functions.
The developer should also avoid using algorithms that may block event handlers or put them
in waiting mode.

Server certificate

NAME

t cert data — received server certificate.

SYNOPSIS

#include "wps_e2.h"

struct t_cert_data

c© Winwap Technologies Oy 29

http://www.winwap.com

WAP Stack API http://www.winwap.com

{
enum t_cert_type type;
const void *data;
size_t size;
int accept;
int reason;
int level;
int chain_depth

};

DESCRIPTION

The data parameter of the callback function func id cert points to the t cert data structure.

The members of the structure are the following:

type certificate type:
cert type x509 — X509 certificate;

data pointer to the first byte of the DER-encoded1 certificate;
size size of the DER-encoded certificate;
accept this field can be assigned the following values:

0 — verification of the received certificate failed
1 — received certificate successfully verified previous processing of the
func id cert event.
The field value can be changed by the WAP Stack client:
set it to 0 to terminate SSL handshake,
set it to 1 to accept the certificate and continue SSL handshake;

reason the reason for the failed verification;
level which certificate in a chain is used during the verification procedure;
chain depth certificate chain depth.

NOTES

The received certificate is fully and successfully verified if the accept is 1 and reason is 0.
The reason codes can be found in the x509 vfy.h file provided with the OpenSSL include files
(please see Appendix A). The reason codes and their descriptions can be found also in the
OpenSSL verify(1) man page.

Each received certificate is verified separately. The certificate chain is checked starting with
the deepest nesting level chain depth – 1 (the root CA certificate) and worked upward to
the peer’s certificate (with level 0). Thus the event f̊unc id cert is called several times for
each received certificate in “Server Hello” message during SSL Handshake. Also the event
f̊unc id cert can be called several times for the same certificate, if there are several failure
reasons.

The WAP Stack client can add issuer certificates that will be used for verification to the
list of trusted certificates. Additional information is available in the wps set prm ptr function
description.

1The DER format is “Distinguished Encoding Rules” and is the most commonly used binary form for ASN.1-
specified objects.

c© Winwap Technologies Oy 30

http://www.winwap.com

WAP Stack API http://www.winwap.com

SEE ALSO

wps set prm ptr 3.3.2

Client certificate request

NAME

t cert req data — data of the client certificate request.

SYNOPSIS

#include "wps_e2.h"

struct t_cert_req_data
{

enum t_cert_type cert_type;
int send;

};

DESCRIPTION

The data parameter of the callback function func id cert req points to the t cert req data
structure.

The members of the structure are as follows:
type requested client certificate type:

cert type x509 — X509 certificate;
send this field can be assigned the following values:

0 — the WAP Stack client should assign its certificate using wps set prm ptr,
1 — informs that the client certificate is already assigned in previous processing of the
func id cert req event.
The field value can be changed by the WAP Stack client:
set it to 0 to terminate SSL handshake,
set it to 1 to send assigned certificate and continue SSL handshake.

During a SSL handshake a server may request a certificate from the client. A client certificate
will only be sent, when the server has sent the certificate request.

SEE ALSO

wps set prm ptr 3.3.2

c© Winwap Technologies Oy 31

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.5 WAP Stack

3.5.1 Creation

NAME

wps open — Open the WAP Stack.

SYNOPSIS

#include "wps_e2.h"

int wps_open(t_hwps *hwps, void *client, t_conn_mode mode);

DESCRIPTION

The wps open function creates a new WAP Stack. With this object, the client application
can open sessions with any WAP Gateway.

The function wps open writes the handle of the created WAP Stack into a location given by
the hwps parameter. The pointer hwps must not be NULL.

The value of the parameter client is used as a context value in the callback functions. It
allows identification of a client in the callback handler. Generally the value client is a pointer
to the client object.

The mode parameter sets the connection mode that will be used for all sessions of the opened
WAP Stack. The mode parameter can be set to one of the following values, defined in the
file wps e2.h:

CL WAP WSP connectionless mode protocol;
CO WAP WSP connection-oriented protocol;
SCL WAP WSP secure connectionless protocol;
SCO WAP WSP secure connection-oriented protocol;
PUSHCL WAP WSP PUSH connectionless protocol;
HTTP WP-HTTP protocol, client mode;
HTTPS WP-HTTP/SSL protocol, client mode;
SRV HTTP WP-HTTP protocol, server mode.

RETURN VALUE

On success, zero is returned. On failure the returned value 1 indicates that the parameter
hwps is NULL. Other values are error codes.

ERRORS

wps error no memory — There is not enough memory for creation of a new WAP Stack.

NOTES

WP-HTTP/SSL protocol can be used only if OpenSSL libraries (http://www.openssl.org/)
are available in the system.

c© Winwap Technologies Oy 32

http://www.winwap.com
http://www.openssl.org/

WAP Stack API http://www.winwap.com

3.5.2 Destroying

NAME

wps close — Close the WAP Stack.

SYNOPSIS

#include "wps_e2.h"

int wps_close(t_hwps hwps);

DESCRIPTION

The function wps close closes the opened WAP Stack.

The wps parameter is a handle of the opened WAP Stack and is returned by the wps open 3.5.1
function.

RETURN VALUE

On success, zero is returned. On failure an error is returned.

ERRORS

wps error not object — The given hwps value is not a WAP Stack handle.

SEE ALSO

wps open 3.5.1.

c© Winwap Technologies Oy 33

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.5.3 Binding to system network interface

NAME

wps bind — Bind the WAP Stack to a system network interface.

SYNOPSIS

#include "wps_e2.h"

int wps_bind(t_hwps hwps, const char *addr, unsigned short port);

DESCRIPTION

The wps bind function is used to bind the WAP Stack to a custom system network address.
The operation of binding is necessary in order to start receiving data from the network. It can
also be used if the WAP Stack client does not listen to all local network interfaces. It allows
receiving of responses from a WAP gateway or HTTP proxy only over a given IP address.

The wps parameter is a handle of the opened WAP Stack. It is returned by the wps open 3.5.1
function.

The addr parameter is an IP address of the available system network interface. The WAP
Stack will be bound to all available system network interfaces If the parameter is NULL.

The port parameter sets the correct listening port number. It is applicable only for the
connectionless WAP PUSH Stack and the WAP HTTP Server Stack. The port value is
ignored for other WAP Stack protocols and instead a port number provided by the system will
be used.

RETURN VALUE

On success, zero is returned. On failure the returned value, ranging from 1 to 2, indicates the
parameter number with incorrect value. Other values are error codes.

ERRORS

wps error not object — The given hwps value is not a WAP Stack handle.

SEE ALSO

wps open 3.5.1

NOTES

c© Winwap Technologies Oy 34

http://www.winwap.com

WAP Stack API http://www.winwap.com

Outgoing requests are sent accordingly to the system IP routing table and requests may be
sent from a different IP address. This function is also used for binding of the connectionless
WAP PUSH Stack. This function must be called before any other operation with the WAP
Stack. It can also be called at any time when there are no active sessions connected. During
the binding to the network interface, the WAP Stack tries to determine the maximum sizes
of system socket buffers for user data reading and sending. The retrieved values are used
for tuning of the WAP Stack internal buffers and during capability negotiation. The applied
actual values are logged with the log level LOG INFORMATION.

c© Winwap Technologies Oy 35

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.6 Session establishment and termination

3.6.1 wps connect

NAME

wps connect — Create/establish new session.

SYNOPSIS

#include "wps_e2.h"

int wps_connect(t_hsession *hses, t_hwps wps, const char *ga, int gp,
const char *session_headers);

DESCRIPTION

The wps connect function is used for the following:

• establishing an asynchronous connection to the WAP gateway in case of connection-
oriented (CO), secure connectionless (SCL) and secure connection-oriented (SCO)
modes;

• assigning WAP Gateway addresses in case of connectionless (CL) mode;

• enabling/disabling HTTP Proxy usage. It is also used for HTTP Proxy address assigning
in case of WP-HTTP (HTTP) and WP-HTTP/SSL (HTTPS) modes.

The parameter hses is an address of the memory place where a session handle will be placed.

The parameter wps is a WAP Stack handle returned by the wps open 3.5.1 function.

The parameters ga and gp are interpreted as described below in the different modes:

CL, CO, SCL, SCO
The parameter ga is a WAP Gateway address. It may be a host name but must not be
NULL
The parameter gp is a WAP Gateway port number.

HTTP, HTTPS
The parameter ga is a HTTP Proxy address, which may be a host name. In case the
parameter value is NULL, the WAP HTTP Stack will use direct connections to requested
hosts in URLs.
The parameter gp is a HTTP Proxy port number.

SRV HTTP
The function wps connect does nothing.

RETURN VALUE

On success, zero is returned. On failure the returned value 1 indicates that the parameter
hses is NULL. Other values are error codes.

c© Winwap Technologies Oy 36

http://www.winwap.com

WAP Stack API http://www.winwap.com

ERRORS

wps error not object — The given hwps value is not a WAP Stack handle.

wps error system — System error occurred.

SEE ALSO

wps disconnect 3.6.2

NOTES

For connection-oriented (CO), secure connectionless (SCL) and secure connection-oriented
(SCO) modes the wps connect function 3.6.1 is asynchronous. It initializes internal structures,
assigns WAP Gateway address, sends connection request to the WAP Gateway and then exits.

In this case the WAP Stack client shall wait for the event func id connect to signal about
successful, failed connection or redirection to another WAP Gateway address.

In other modes the WAP Stack does not send connection request and the WAP Stack client
shall not wait for the event func id connect.

All opened session handles, even if the failed result in a func id connect event handler is
signaled, shall be closed by wps disconnect 3.6.2.

The session headers parameter is needed for setting some specific HTTP headers that are
required for a successful connection to a WAP Gateway or HTTP proxy. Below is a list of
some known HTTP headers that might be required by a WAP Gateway:

Proxy-Authorization
Profile
User-Agent

Some WAP Gateways might use different names for these headers: X-Authorization, X-WAP-
Authorization; X-Profile, X-WAP-Profile . . .

In case of WAP WSP Stack, connection-oriented (CO) and secure connection-oriented (SCO)
modes these session headers are used once during session establishment and generally for
authorization.

In case of WAP WSP Stack, connectionless (CL) and secure connectionless (SCL) modes
these session headers are not used during session establishment, since in connectionless modes
the WSP session is not established.

In case of a WAP HTTP Stack, a new TCP session for each request is established. Therefore
these session headers are appended to the HTTP headers that are given in the wps get 3.7.1 or
wps post 3.7.2 functions. Therefore the developer of the WAP Stack client must be careful and
not pass HTTP headers that are already passed through the session headers parameter.
If one HTTP header is included two or more times in the sent HTTP request and this header
can not contain a list of values according to the RFC-2616 2, the “Bad Request” response
might be received.

c© Winwap Technologies Oy 37

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.6.2 wps disconnect

NAME

wps disconnect — Disconnect/terminate the session.

SYNOPSIS

#include "wps_e2.h"

int wps_disconnect(t_hsession ses);

DESCRIPTION

The wps disconnect function terminates all active requests within the given session, sends
session termination request if needed, and closes the session handle.

RETURN VALUE

On success zero is returned. Any other value is an error code.

ERRORS

wps error not object — The given ses value is not a WAP Stack session handle.

wps error system — System error occurred.

c© Winwap Technologies Oy 38

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.7 Data requesting

3.7.1 wps get

NAME

wps get — Request a resource through the method GET.

SYNOPSIS

#include "wps_e2.h"

int wps_get(t_hreq *hreq, t_hsession session, const char *uri,
const char *headers);

DESCRIPTION

wps get sends a GET request to a WAP Gateway or HTTP Proxy. The function is asyn-
chronous and therefore the WAP Stack client shall wait for the func id reply event.

The hreq parameter points to the memory place where the new request handler shall be
placed. This handler is needed for request identification.

The session parameter identifies a session in which the request will be sent.

The uri parameter identifies a requested resource.

The headers parameter sets HTTP headers, which will be sent with the request. If the
parameter is NULL, default headers will be sent. The headers will be not sent if the string is
empty.

The default headers are the following (the version number in the User-Agent header may be
different) :

Accept-Charset: utf-8, iso-8859-1, iso-10646-ucs-2\r\n
Accept: application/vnd.wap.wmlc,

application/vnd.wap.wmlscriptc,
image/vnd.wap.wbmp,
image/gif\r\n

User-Agent: WAP-Stack-Client/2.6.1

RETURN VALUE

On success, zero is returned. On failure the returned value ranging from 1 to 4 indicates the
parameter number with incorrect value. Another value is an error code.

ERRORS

wps error not object — The given session value is not a WAP Stack session handle.

c© Winwap Technologies Oy 39

http://www.winwap.com

WAP Stack API http://www.winwap.com

wps error network — (HTTP/HTTPS mode) Can’t open or bind TCP socket; can’t connect
to remote host or proxy. Please verify: proxy address/port; server hostname in URL

wps error ssl — (HTTPS mode) Can’t connect to remote host using SSL; can’t open SSL
tunnel through the proxy.

wps error system — System error occurred.

wps error timedout — Timeout while attempting request. Please see wps get prm and
wps set prm 3.3.1 description for more explanations.

SEE ALSO

wps abort 3.7.3, wps set prm 3.3.1

NOTES

The HTTP headers must be well-formed according to the RFC-2616 2.

c© Winwap Technologies Oy 40

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.7.2 wps post

NAME

wps post — Request a resource through the method POST.

SYNOPSIS

#include "wps_e2.h"

int wps_post(t_hreq *hreq, t_hsession session, const char *uri,
const void *data, size_t data_size, const char *cont_type,
const char *headers);

DESCRIPTION

wps post sends a POST request to a WAP Gateway or HTTP Proxy, in other words it posts
data from an application. The function is asynchronous and therefore the WAP Stack client
shall wait for the func id reply event.

The hreq parameter points to the memory place where the new request handler shall be
placed. This handler is needed for request identification.

The session parameter identifies a session in which the request will be sent.

The uri parameter identifies a requested resource.

The data parameter is a pointer to the data that will be posted.

The data size is a data size.

The cont type is a type of data content. If the value is NULL the ”application/x-www-
form-urlencoded” value will be sent

The headers parameter sets HTTP headers, which will be sent with the request. If the
parameter is NULL, default headers will be sent. The headers will be not sent if the string is
empty.

The default headers are the following (the version number in the User-Agent header may be
different) :

Accept-Charset: utf-8, iso-8859-1, iso-10646-ucs-2\r\n
Accept: application/vnd.wap.wmlc,

application/vnd.wap.wmlscriptc,
image/vnd.wap.wbmp,
image/gif\r\n

User-Agent: WAP-Stack-Client/2.6.1\r\n
Content-Length: < content size >

RETURN VALUE

On success zero is returned. On failure the returned value ranging from 1 to 7 indicates the
parameter number with incorrect value.

c© Winwap Technologies Oy 41

http://www.winwap.com

WAP Stack API http://www.winwap.com

ERRORS

wps error not object — The given session value is not a WAP Stack session handle.

wps error network — (HTTP/HTTPS mode) Can’t open or bind TCP socket; can’t connect
to remote host or proxy. Please verify: proxy address/port; server hostname in URL

wps error ssl — (HTTPS mode) Can’t connect to remote host using SSL; can’t open SSL
tunnel through the proxy.

wps error system — System error occurred.

wps error timedout — Timeout while attempting request. Please see wps get prm and
wps set prm 3.3.1 description for more explanations.

SEE ALSO

wps abort 3.7.3, wps set prm 3.3.1

NOTES

The HTTP headers must be well-formed according to the RFC-2616 2. The WAP Stack client
shall not pass Content-Type and Content-Length HTTP headers in the headers parameter.

c© Winwap Technologies Oy 42

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.7.3 wps abort

NAME

wps abort — Abort request.

SYNOPSIS

#include "wps_e2.h"

int wps_abort(t_hreq req);

DESCRIPTION

The wps abort function terminates an active request identified by the req parameter.

RETURN VALUE

On success zero is returned. Another value is an error code.

ERRORS

wps error not object — The given hreq value is not a WAP Stack request handle.

wps error system — System error occurred.

c© Winwap Technologies Oy 43

http://www.winwap.com

WAP Stack API http://www.winwap.com

3.8 Sending requested data

3.8.1 wps reply

NAME

wps reply — Send requested data.

SYNOPSIS

#include "wps_e2.h"

int wps_reply(t_hreq hreq, const struct t_http_reply_data *rdata);

DESCRIPTION

When the WAP HTTP Server Stack receives a HTTP request, it opens a new WP-HTTP
session and calls the func id http req event. When the WAP Stack client has processed the
event, it can send a reply to the received request using the wps reply function.

The received request is identified by hreq handle, which is given in the wps id http req event.

The rdata points to the structure that will receive reply data. The structure is defined in the
file “wps types.h”:

struct t_http_reply_data
{

int status;
const char *desc;
const char *hdrs;
const void *data;
size_t data_size;
const char *ct;

};

The members of the structure are similar to the wps post 3.7.2 function parameters:

status — HTTP status code as defined in the RFC-2616 2;
desc — status description, if NULL default description from the RFC-2616 2 will be used;
hdrs — HTTP headers to be sent;
data — pointer to the data to be sent;
data size — data size;
ct — type of data content.

RETURN VALUE

On success zero is returned. On failure the returned value 2 indicates that the pointer rdata
is NULL or some of the structure members has a wrong value. Any other value is an error
code.

c© Winwap Technologies Oy 44

http://www.winwap.com

WAP Stack API http://www.winwap.com

ERRORS

wps error not object — The given hreq value is not a WAP Stack request handle.

wps error system — System error occurred.

NOTES

The HTTP headers must be well-formed according to the RFC-2616 2. The WAP Stack client
shall not pass Content-Type and Content-Length HTTP headers in the headers parameter.

The wps reply function shall be called inside the func id http req event handler or some-
where else before the handler is returned. In other cases the wps reply returns the error
wps error not object.

c© Winwap Technologies Oy 45

http://www.winwap.com

WAP Stack API http://www.winwap.com

A Appendix

A.1 List of server certificate validation codes

An exhaustive list of the SSL error codes and messages is shown below, this also includes the name
of the error code as defined in the SSL header file x509 vfy.h.

0 X509 V OK
ok
The operation was successful.

2 X509 V ERR UNABLE TO GET ISSUER CERT
Unable to get issuer certificate
The issuer certificate could not be found: this occurs if the issuer certificate of an untrusted certificate
cannot be found.

4 X509 V ERR UNABLE TO DECRYPT CERT SIGNATURE
Unable to decrypt certificate’s signature
The certificate signature could not be decrypted. This means that the actual signature value could
not be determined rather than it not matching the expected value, this is only meaningful for RSA
keys.

6 X509 V ERR UNABLE TO DECODE ISSUER PUBLIC KEY
Unable to decode issuer public key
the public key in the certificate SubjectPublicKeyInfo could not be read.

7 X509 V ERR CERT SIGNATURE FAILURE
Certificate signature failure
The signature of the certificate is invalid.

9 X509 V ERR CERT NOT YET VALID
Certificate is not yet valid
The certificate is not yet valid: the notBefore date is after the current time.

10 X509 V ERR CERT HAS EXPIRED
Certificate has expired
The certificate has expired: that is the notAfter date is before the current time.

13 X509 V ERR ERROR IN CERT NOT BEFORE FIELD
Format error in certificate’s notBefore field
The certificate notBefore field contains an invalid time.

14 X509 V ERR ERROR IN CERT NOT AFTER FIELD
Format error in certificate’s notAfter field
The certificate notAfter field contains an invalid time.

17 X509 V ERR OUT OF MEM
Out of memory
An error occurred trying to allocate memory. This should never happen.

18 X509 V ERR DEPTH ZERO SELF SIGNED CERT
Self signed certificate

c© Winwap Technologies Oy 46

http://www.winwap.com

WAP Stack API http://www.winwap.com

The passed certificate is self signed and the same certificate cannot be found in the list of trusted
certificates.

19 X509 V ERR SELF SIGNED CERT IN CHAIN
Self signed certificate in certificate chain
The certificate chain could be built up using the untrusted certificates but the root could not be
found locally.

20 X509 V ERR UNABLE TO GET ISSUER CERT LOCALLY
Unable to get local issuer certificate
The issuer certificate of a locally looked up certificate could not be found. This normally means the
list of trusted certificates is not complete.

21 X509 V ERR UNABLE TO VERIFY LEAF SIGNATURE
Unable to verify the first certificate
No signatures could be verified because the chain contains only one certificate and it is not self
signed.

24 X509 V ERR INVALID CA
Invalid CA certificate
A CA certificate is invalid. Either it is not a CA or its extensions are not consistent with the supplied
purpose.

25 X509 V ERR PATH LENGTH EXCEEDED
Path length constraint exceeded The basicConstraints pathlength parameter has been exceeded.

26 X509 V ERR INVALID PURPOSE
Unsupported certificate purpose
The supplied certificate cannot be used for the specified purpose.

27 X509 V ERR CERT UNTRUSTED
Certificate not trusted
The root CA is not marked as trusted for the specified purpose.

28 X509 V ERR CERT REJECTED
Certificate rejected
The root CA is marked to reject the specified purpose.

29 X509 V ERR SUBJECT ISSUER MISMATCH
Subject issuer mismatch
The current candidate issuer certificate was rejected because its subject name did not match the
issuer name of the current certificate.

30 X509 V ERR AKID SKID MISMATCH
Authority and subject key identifier mismatch
The current candidate issuer certificate was rejected because its subject key identifier was present
and did not match the authority key identifier current certificate.

31 X509 V ERR AKID ISSUER SERIAL MISMATCH
Authority and issuer serial number mismatch
The current candidate issuer certificate was rejected because its issuer name and serial number was
present and did not match the authority key identifier of the current certificate.

c© Winwap Technologies Oy 47

http://www.winwap.com

WAP Stack API http://www.winwap.com

32 X509 V ERR KEYUSAGE NO CERTSIGN
Key usage does not include certificate signing
The current candidate issuer certificate was rejected because its keyUsage extension does not permit
certificate signing.

c© Winwap Technologies Oy 48

http://www.winwap.com

Index

API, 5

Callback functions, 19
Controlling

Requests, 17

Event handlers, 19

Function
wps abort, 43
wps bind, 34
wps close, 33
wps connect, 36
wps disconnect, 38
wps get, 39
wps get prm, 9
wps get prm ptr, 13
wps get prm req, 17
wps init, 6
wps init log, 7
wps open, 32
wps post, 41
wps reg callback func, 19
wps reply, 44
wps set prm, 9
wps set prm ptr, 13
wps set wtlsclient id, 18

Structure
t alias, 16
t cert ca data, 15
t cert cli data, 15
t cert data, 30
t cert req data, 31
t connect data, 23
t ext method, 16
t hcodepage, 16
t http reply data, 44
t http req data, 25
t log prm, 7
t progress data, 27
t push data, 24
t reply data, 24
t wtp frame data, 28

Tuning, 9

WTLS client identifier, 18
Type

f callback, 21

WAP Stack, 3
binding, 34
client, 3
creation, 32
destroying, 33

49

	Definitions
	Normative references
	API specification
	Declarations
	Library initialization and release
	wps_init, wps_fini
	Logging

	Tuning
	wps_get_prm, wps_set_prm
	wps_get_prm_ptr, wps_set_prm_ptr
	wps_get_prm_req
	wps_set_wtlsclient_id

	Register event handlers
	wps_reg_callback_func
	Callback functions
	Event data

	WAP Stack
	Creation
	Destroying
	Binding to system network interface

	Session establishment and termination
	wps_connect
	wps_disconnect

	Data requesting
	wps_get
	wps_post
	wps_abort

	Sending requested data
	wps_reply

	Appendix
	List of server certificate validation codes

